Переход на главную страницу сайта “Термист” Термист
Термомеханическое упрочнение арматурного проката
технология, средства, разработка
Главная О сайте Стандарты Технология Устройства
Лаборатория Библиотека Глоссарий Желтые страницы Обратная связь

Понятие о римановой геометрии

Риманова геометрия - многомерное обобщение геометрии на поверхности, представляющее собой теорию римановых пространств, т. е. таких пространств, где в малых областях приближённо имеет место евклидова геометрия (с точностью до малых высшего порядка сравнительно с размерами области). Риманова геометрия получила своё название по имени Б.Римана, который заложил её основы в 1854 г.

 

Простейший пример риманова пространства представляет любая гладкая поверхность. Действительно, в достаточно малой окрестности любой точки она совпадает (с точностью до величин высшего порядка малости) с касательной плоскостью в этой точке; поэтому в такой окрестности соотношения длин на поверхности будут такими же, как на плоскости (конечно, с точностью до малых величин высшего порядка). Таким образом, в малых областях поверхности имеет место (с точностью до малых величин высшего порядка) евклидова геометрия.

Например, при измерениях на участках земной поверхности, малых в сравнении с размерами земного шара, можно с успехом применять обычную планиметрию. Однако результаты измерений на больших участках обнаруживают существенное отклонение от законов планиметрии.

Таким образом, поверхность, рассматриваемая с точки зрения измерений, проводимых на ней, оказывается двумерным пространством, геометрия которого (т. н. внутренняя геометрия поверхности), будучи евклидовой в бесконечно малом, в целом не является евклидовой; к тому же, как правило, такое пространство неоднородно по своим геометрическим свойствам. Внутренняя геометрия поверхности есть не что иное, как риманова геометрия в случае двух измерений, а поверхность, рассматриваемая с точки зрения её внутренней геометрии, есть двумерное риманово пространство.

Перенесение этих понятий на многомерные пространства приводит к общей римановой геометрии Именно, рассматривается абстрактное пространство n измерении, в котором задаётся закон измерения расстояний, совпадающий вблизи каждой точки с обычным евклидовым с точностью до бесконечно малых высшего порядка.

В основе рассматриваемой геометрии лежат три идеи.
Первая идея - признание того, что вообще возможна геометрия, отличная от евклидовой, была впервые развита Н.И.Лобачевским.
Вторая - это идущее от К.Гаусса понятие внутренней геометрии поверхностей и её аналитический аппарат в виде квадратичной формы, определяющий линейный элемент поверхности.
Третья идея - это понятие об n-мерном пространстве, выдвинутое и разработанное в простейших случаях в 1-й половине 19 в. рядом геометров.

Б.Риман, соединив и обобщив эти идеи, ввёл, во-первых, общее понятие о пространстве как о непрерывной совокупности любого рода однотипных объектов, которые служат точками этого пространства. Во-вторых, Б.Риман перенёс на эти абстрактные пространства представление об измерении длин бесконечно малыми шагами, т. е. дал общее понятие о метрике, определяемой формулой
ds = f(x1, x2, ..., xn; dx1, dx2, ..., dxn.

Б.Риман специально исследовал метрику, задаваемую формулой (2) (см. ниже), чем и положил начало такой геометрии; кроме того, он наметил возможные связи предложенной геометрии со свойствами реального пространства. Таково коротко содержание его лекции «О гипотезах, лежащих в основании геометрии», прочитанной в 1854 г. и опубликованной лишь после его смерти, в 1868 г. Помимо этого Б.Риман в другой работе дал приложение аналитического аппарата своей теории к задаче о распространении тепла в анизотропном теле. Эта работа также была издана лишь после его смерти, в 1869 г. Следует отметить, что риманова геометрия возникла и развивалась в работах Б.Римана в связи с физикой. После опубликования работ Римана его идеи привлекли внимание ряда математиков, которые развивали дальше аналитический аппарат римановой геометрии и устанавливали в ней новые теоремы геометрического характера. Были даны также применения такой геометрии, например, в механике. Важным шагом было создание Г.Риччи-Курбастро и Т.Леви-Чивита на рубеже 20 в. тензорного исчисления, которое оказалось наиболее подходящим аналитическим аппаратом для разработки римановой геометрии. Решающее же значение имело применение такой геометрии в создании общей теории относительности, которое было триумфом не только абстрактной геометрии и её аналитического аппарата, но и идей о связи геометрии и физики, выдвинутых Н.И.Лобачевским и Б.Риманом. Это привело к бурному развитию неевклидовых геометрий и её разнообразных обобщений. В настоящее время риманова геометрия вместе с её обобщениями представляет обширную область геометрии, которая продолжает успешно развиваться в разных направлениях.

 

Читать дальше:
Определение риманова пространства
Понятия и факты римановой геометрии
Приложения и обобщения римановой геометрии

 



Опубликовано по материалам: Математический энциклопедический словарь. / Гл. ред. Ю.В.Прохоров; Ред. кол.: С.И.Адян, Н.С.Бахвалов, В.И.Битюцков и др. - М.: Сов. энциклопедия, 1988. - 847 с. стр. 528 - 529.

 

К началу страницы


Web-сайт “Термист” (termist.com)
Термомеханическое упрочнение арматурного проката

Отсутствие ссылки на использованный материал является нарушением заповеди "Не укради"

Редактор сайта: Гунькин И.А. (termist.com@gmail.com)