Термист Термомеханическое упрочнение арматурного проката технология, средства, разработка |
Главная | О сайте | Стандарты | Технология | Устройства |
Лаборатория | Библиотека | Глоссарий | Желтые страницы | Обратная связь |
Постановка задачи
Каков ответ в предыдущей задаче, если длина иглы произвольна?
Решение задачи
Разделим мысленно иглу на n кусков одинаковой и меньшей единицы длины. При бросании каждого из этих кусков среднее число его пересечений было найдено в предыдущей задаче. Таким образом, согласно уже упоминавшейся теореме о среднем суммы, среднее число пересечений равно 4∙(исходная длина)/π. Тот факт, что игла подбрасывается вся целиком, а не кусочками, не имеет здесь значения.
Для определения числа π эксперимент, отвечающий настоящей задаче, более удобен чем первоначальный, предложенный Бюффоном. (Почему бы не взять лист клетчатой бумаги и не провести его?) Автор провел такой опыт с зубной щеткой и графленой бумагой. Длина щетки была равной 5.2 дюйма, а клетки 1 дюйм. При десяти бросаниях автор получил 8, 6, 7, 6, 5, 6, 7, 5, 5, 7 пересечений, что в сумме дает 62.
Итак, оценкой числа π в этом случае является 4∙5.2/(62/10) ≈ 3.35 вместо 3.14. При другом опыте, состоящем также из 10 подбрасываний, было получено 67 пересечений, что дает оценку 3.10.
Публикуется по работе: Пятьдесят занимательных вероятностных задач с решениями. Ф.Мостеллер, перев. с англ., издание второе. М. Наука, 1975, 112 с.
Web-сайт “Термист” (termist.com)
Термомеханическое упрочнение арматурного проката
Отсутствие ссылки на использованный материал является нарушением заповеди "Не укради"
Редактор сайта: Гунькин И.А. (termist.com@gmail.com)