Термист Термомеханическое упрочнение арматурного проката технология, средства, разработка |
Главная | О сайте | Стандарты | Технология | Устройства |
Лаборатория | Библиотека | Глоссарий | Желтые страницы | Обратная связь |
Постановка задачи
Какова вероятность того, что корни квадратного уравнения x2 + 2bx + c = 0 вещественны?
Решение задачи
Для того чтобы вопрос задачи имел смысл, предположим, что точка (b, c) равномерно распределена на квадрате с центром в начале координат и стороной 2B (рис. 1). Решим задачу при фиксированном B, а затем устремим B к бесконечности, так что b и c могут принимать любые значения.
Рис. 1. Серая область отвечает случаю вещественных корней |
Для того чтобы уравнение имело вещественные корни, необходимо и достаточно,
чтобы
b2 - c ≥ 0.
На приведенном рисунке изображена парабола b2 = c и показана область, где наше уравнение имеет вещественные корни для B = 4.
Нетрудно подсчитать, что площадь незаштрихованной области равна 4/3∙B3/2 (при B ≥ 1), а площадь всего квадрата, конечно, равна 4B2. Следовательно, вероятность того, что корни комплексные, равна 1/3∙√B. При B = 4 ответ равен 1/6. С ростом B 1/√B стремится к нулю, так что вероятность того, что корни вещественные, стремится к 1.
Следует заметить, что эта задача отличается от такой же задачи, связанной с уравнением ax2 + 2bx + c = 0. Конечно, можно разделить на a, но если a, b и c были независимы и равномерно распределены в некотором кубе, то b/a и c/a уже зависимы и распределены неравномерно.
Публикуется по работе: Пятьдесят занимательных вероятностных задач с решениями. Ф.Мостеллер, перев. с англ., издание второе. М. Наука, 1975, 112 с.
Web-сайт “Термист” (termist.com)
Термомеханическое упрочнение арматурного проката
Отсутствие ссылки на использованный материал является нарушением заповеди "Не укради"
Редактор сайта: Гунькин И.А. (termist.com@gmail.com)