Переход на главную страницу сайта “Термист” Термист
Термомеханическое упрочнение арматурного проката
технология, средства, разработка
Главная О сайте Стандарты Технология Устройства
Лаборатория Библиотека Глоссарий Желтые страницы Обратная связь

Строение слитка

Из учебника А.П.Гуляева "Металловедение"

 

Ранее было отмечено, что реальный процесс кристаллизации осложняется влиянием побочных факторов (см. п. 4). Сочетание влияния этих привнесенных факторов (часто не поддающихся точному учету) с общими законами кристаллизации и определяет особенности строения стального слитка.

Описание строения стального слитка впервые дано в 1878 г. Д.К. Черновым. Остальные характерные черты в строении литого металла были отмечены тогда Д.К. Черновым, хотя многочисленные последующие исследования вскрыли много новых деталей.

Структура литого слитка состоит из трех основных зон (рис. 34). Первая зона - наружная мелкозернистая корка 1, состоящая из дезориентированных мелких кристаллов - дендритов. При первом соприкосновении со стенками изложницы в тонком прилегающем слое жидкого металла возникает резкий градиент температур и явление переохлаждения, ведущее к образованию большого количества центров кристаллизации. В результате корка получает мелкозернистое строение.

Схема строения стального слитка

Рис. 34. Схема строения стального слитка
1 - мелкозернистая корка,
2 - зона столбчатых кристаллов,
3 - зона равноосных кристаллов.

Вторая зона слитка - зона столбчатых кристаллов 2. После образования самой корки условия теплоотвода меняются (из-за теплового сопротивления, из-за повышения температуры стенки изложницы и других причин), градиент температур в прилегающем слое жидкого металла резко уменьшается и, следовательно, уменьшается степень переохлаждения стали. В результате из небольшого числа центров кристаллизации начинают расти нормально ориентированные к поверхности корки (т.е. в направлении отвода тепла) столбчатые кристаллы.

Третья зона слитка - зона равноосных кристаллов 3. В центре слитка уже нет определенной направленности отдачи тепла. «Температура застывающего металла успевает почти совершенно уравниваться в различных точках и жидкость обращается как бы в кашеобразное состояние, вследствие образования в различных ее точках зачатков кристаллов. Далее зачатки разрастаются осями - ветвями по различным направлениям, встречаясь друг с другом» (Чернов Д.К.) В результате этого процесса образуется равноосная структура. Зародышами кристалла здесь являются обычно различные мельчайшие включения, присутствующие в жидкой стали, или случайно в нее попавшие, или не растворившиеся в жидком металле.

В зоне столбчатых кристаллов металл более плотный, он содержит меньше раковин и газовых пузырей. Однако места стыка столбчатых кристаллов обладают малой прочностью.

Кристаллизация, приводящая к стыку зон столбчатых кристаллов, носит название транскристаллизации.

Степень развития столбчатых кристаллов будет варьироваться главным образом в зависимости от химического состава металла, степени его перегрева, от размера слитка, скорости разливки, формы изложницы и толщины, а также температуры ее стенок. Эти факторы будут влиять на скорость теплоотвода и образование больших или меньших градиентов температур внутри объема кристаллизующейся стали и т.д. Повышение степени перегрева и увеличение скорости охлаждения слитка способствует увеличению доли столбчатых кристаллов и может повести к полной транскристаллизации, как это показано на рис. 35, а; при несколько замедленном охлаждении в центре слитка образуется зона равноосных кристаллов (рис. 35, б).

Транскристаллиэация слитка алюминиевой бронзы Расположение усадочной раковины и пустот в слитках спокойной и кипящей сталей

Рис. 35. Транскристаллиэация слитка алюминиевой бронзы

Рис. 36. Расположение усадочной раковины и пустот в слитках спокойной (а) и кипящей (б) сталей

Жидкий металл имеет больший объем, чем закристаллизовавшийся, поэтому залитый в форму металл в процессе кристаллизации сокращается в объеме, что приводит к образованию пустот, называемых усадочными раковинами; усадочные раковины могут быть сконцентрированы в одном месте, либо рассеяны по всему объему слитка или по его части. Они могут быть заполнены газами, растворимыми в жидком металле, но выделяющимися при кристаллизации. В хорошо раскисленной так называемой спокойной стали, отлитой в изложницу с утепленной надставкой, усадочная раковина образуется в верхней части слитка, и в объеме всего слитка содержится малое количество газовых пузырей и раковин (рис. 36,а). Недостаточно раскисленная, так называемая кипящая сталь, содержит раковины и пузыри во всем объеме (рис. 36, б). Спокойный металл поэтому более плотный, чем кипящий.

Форма первичных кристаллов (дендритов) после горячей механической обработки давлением (ковка, прессовка, прокатка и т.д.) видоизменяется. Дендриты вытягиваются вдоль направления течения металла и превращаются в волокна. В результате возникает различие в свойствах вдоль проката (вдоль волокна) и поперек. (Анизотропия свойств деформированных изделий в сильной степени зависит от наличия неметаллических включений, располагающихся при деформации в строчки, идущие вдоль волокон.)

На рис. 37 приведена макроструктура штампованного клапана, на котором видно распределение волокон вдоль контура изделия. Такое расположение волокон является наилучшим и следует стремиться ковкой добиться именно такого распределения, избегая перерезанных волокон. (Точнее, следует стремиться к тому, чтобы расположение волокон совпадало с направлением главных усилий в деталях при работе.)

Макроструктура штампованного клапана

Рис. 37. Макроструктура штампованного клапана

 



Использована публикация:
Гуляев А.П. Металловедение. Учебник для втузов. 6-е изд., перераб. и доп. М.: Металлургия, 1986. 544 с.
стр. 47 - 49.

К началу страницы


Web-сайт “Термист” (termist.com)
Термомеханическое упрочнение арматурного проката

Отсутствие ссылки на использованный материал является нарушением заповеди "Не укради"

Редактор сайта: Гунькин И.А. (termist.com@gmail.com)